35 resultados para Auditory cortex

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM: A single session of skill or strength training can modulate the primary motor cortex (M1), which manifests as increased corticospinal excitability (CSE) and decreased short-latency intra-cortical inhibition (SICI). We tested the hypothesis that both skill and strength training can propagate the neural mechanisms mediating cross-transfer and modulate the ipsilateral M1 (iM1). METHODS: Transcranial magnetic stimulation (TMS) measured baseline CSE and SICI in the contralateral motor cortex (cM1) and iM1. Participants completed 4 sets of unilateral training with their dominant arm, either visuomotor tracking, metronome-paced strength training (MPST), self-paced strength training (SPST) or control. Immediately post training, TMS was repeated in both M1s. RESULTS: Motor-evoked potentials (MEPs) increased and inhibition was reduced for skill and MPST training from baseline in both M1s. Self-paced strength training and control did not produce changes in CSE and SICI when compared to baseline in both M1s. After training, skill and MPST increased CSE and decreased SICI in cM1 compared to SPST and control. Skill and MPST training decreased SICI in iM1 compared to SPST and control post intervention; however, CSE in iM1 was not different across groups post training. CONCLUSION: Both skill training and MPST facilitated an increase in CSE and released SICI in iM1 and cM1 compared to baseline. Our results suggest that synchronizing to an auditory or a visual cue promotes neural adaptations within the iM1, which is thought to mediate cross transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study describes how an auditory looming technique was used to investigate 4-to 6-month-old infants' sensitivity to sound pressure level (SPL) as an auditory distance cue. Thirty-two infants were tested in complete darkness and presented with auditory stimuli that underwent unidirectional variations in SPL (40–70dB). The rate at which SPL was varied during the course of trials (past vs. slow) was manipulated by varying trial length (5s vs. 10s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human auditory localisation reversals are explored using mixture distribution analysis techniques. This is validated for front/back reversals and subsequently shown to provide evidence for up/down reversals as distinct classes of mis-localisation. Torso-related localisation cues are identified and also shown to provide a source for resolving these reversals in some listeners.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to examine quantitative differences in lobar cerebral cortical volumes in a healthy adult population. Quantitative volumetric MRI of whole brain, cerebral and cerebellar volumes was performed in a cross-sectional analysis of 97 normal volunteers, with segmented frontal, temporal, parietal and occipital cortical volumes measured in a subgroup of 60 subjects, 30 male and 30 female, matched for age and sex. The right cerebral hemisphere was larger than the left across the study group with a small (<1%) but significant difference in symmetry (P < 0.001). No difference was found between volumes of right and left cerebellar hemispheres. Rightward cerebral cortical asymmetry (right larger than left) was found to be significant across all lobes except parietal. Males had greater cerebral, cerebellar and cerebral cortical lobar volumes than females. Larger male cerebral cortical volumes were seen in all lobes except for left parietal. Females had greater left parietal to left cerebral hemisphere and smaller left temporal to left cerebral hemisphere ratios. There was a mild reduction in cerebral volumes with age, more marked in males. This study confirms and augments past work indicating underlying structural asymmetries in the human brain, and provides further evidence that brain structures in humans are differentially sensitive to the effects of both age and sex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Excitability at the motoneuron pool and motor cortex is specifically modulated in lengthening compared to isometric contractions. J Neurophysiol 101: 2030–2040, 2009. First published January 28, 2008; doi:10.1152/jn.91104.2008. Neural control of muscle contraction seems to be unique during muscle lengthening. The present study aimed to determine the specific sites of modulatory control for lengthening compared with isometric contractions. We used stimulation of the motor cortex and corticospinal tract to observe changes at the spinal and cortical levels. Motor-evoked potentials (MEPs) and cervicomedullary MEPs (CMEPs) were evoked in biceps brachii and brachioradialis during maximal and submaximal lengthening and isometric contractions at the same elbow angle. Sizes of CMEPs and MEPs were lower in lengthening contractions for both muscles (by 28 and 16%, respectively; P 0.01), but MEP-to-CMEP ratios increased (by 21%; P 0.05). These results indicate reduced excitability at the spinal level but enhanced motor cortical excitability for lengthening compared with isometric muscle contractions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Utilizing user-centred system design and evaluation method has become an increasingly important tool to foster better usability in the field of virtual environments (VEs). In recent years, although it is still the norm that designers and developers are concerning the technological advancement and striving for designing impressive multimodal multisensory interfaces, more and more awareness are aroused among the development team that in order to produce usable and useful interfaces, it is essential to have users in mind during design and validate a new design from users' perspective. In this paper, we describe a user study carried out to validate a newly developed haptically enabled virtual training system. By taking consideration of the complexity of individual differences on human performance, adoption and acceptance of haptic and audio-visual I/O devices, we address how well users learn, perform, adapt to and perceive object assembly training. We also explore user experience and interaction with the system, and discuss how multisensory feedback affects user performance, perception and acceptance. At last, we discuss how to better design VEs that enhance users perception, their interaction and motor activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent investigations have implicated the medial prefrontal cortex (mPFC) in modulation of subcortical pathways that contribute to the generation of behavioural, autonomic and endocrine responses to stress. However, little is known of the mechanisms involved. One of the key neurotransmitters involved in mPFC function is dopamine, and we therefore aimed, in this investigation, to examine the role of mPFC dopamine in response to stress in Wistar rats. In this regard, we infused dopamine antagonists SCH23390 or sulpiride into the mPFC via retrodialysis. We then examined changes in numbers of cells expressing the c-fos immediate-early gene protein product, Fos, in subcortical neuronal populations associated with regulation of hypothalamic-pituitary-adrenal (HPA) axis stress responses in response to either of two stressors; systemic injection of interleukin-1β, or air puff. The D1 antagonist, SCH23390, and the D2 antagonist, sulpiride, both attenuated expression of Fos in the medial parvocellular hypothalamic paraventricular nucleus (mpPVN) corticotropin-releasing factor cells at the apex of the HPA axis, as well as in most extra-hypothalamic brain regions examined in response to interleukin-1β. By contrast, SCH23390 failed to affect Fos expression in response to air puff in any brain region examined, while sulpiride resulted in an attenuation of the air puff-induced response in only the mpPVN and the bed nucleus of the stria terminalis. These results indicate that the mPFC differentially processes the response to different stressors and that the two types of dopamine receptor may have different roles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The medial prefrontal cortex (mPFC) has been strongly implicated in control of the paraventricular nucleus of the hypothalamus (PVN) response to stress. Because of the paucity of direct projections from the mPFC to the PVN, we sought to investigate possible brain regions that might act as a relay between the two during psychological stress. Bilateral ibotenic acid lesions of the rat mPFC enhanced the number of Fos-immunoreactive cells seen in the PVN after exposure to the psychological stressor, air puff. Altered neuronal recruitment was seen in only one of the candidate relay populations examined, the ventral bed nucleus of the stria terminalis (vBNST). Furthermore, bilateral ibotenic acid lesions of the BNST caused a significant attenuation of the PVN response to air puff. To better characterize the structural relationships between the mPFC and PVN, retrograde tracing studies were conducted examining Fos expression in cells retrogradely labeled with cholera toxin b subunit (CTb) from the PVN and the BNST. Results obtained were consistent with an important role for both the mPFC and BNST in the mpPVN CRF cell response to air puff. We suggest a set of connections whereby a direct PVN projection from the ipsilateral vBNST is involved in the mpPVN response to air puff and this may, in turn, be modulated by an indirect projection from the mPFC to the BNST.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have shown that the medial prefrontal cortex can suppress the hypothalamic–pituitary–adrenal axis response to stress. However, this effect appears to vary with the type of stressor. Furthermore, the absence of direct projections between the medial prefrontal cortex and corticotropin-releasing factor cells at the apex of the hypothalamic–pituitary–adrenal axis suggest that other brain regions must act as a relay when this inhibitory mechanism is activated. In the present study, we first established that electrolytic lesions involving the prelimbic and infralimbic medial prefrontal cortex increased plasma adrenocorticotropic hormone levels seen in response to a physical stressor, the systemic delivery of interleukin-1β. However, medial prefrontal cortex lesions did not alter plasma adrenocorticotropic hormone levels seen in response to a psychological stressor, noise. To identify brain regions that might mediate the effect of medial prefrontal cortex lesions on hypothalamic–pituitary–adrenal axis responses to systemic interleukin-1β, we next mapped the effects of similar lesions on interleukin-1β-induced Fos expression in regions previously shown to regulate the hypothalamic–pituitary–adrenal axis response to this stressor. It was found that medial prefrontal cortex lesions reduced the number of Fos-positive cells in the ventral aspect of the bed nucleus of the stria terminalis. However, the final experiment, which involved combining retrograde tracing with Fos immunolabelling, revealed that bed nucleus of the stria terminalis-projecting medial prefrontal cortex neurons were largely separate from medial prefrontal cortex neurons recruited by systemic interleukin-1β, an outcome that is difficult to reconcile with a simple medial prefrontal cortex–bed nucleus of the stria terminalis–corticotropin-releasing factor cell control circuit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure to social stress has been linked to the development and maintenance of mood-related psychopathology; however, the underlying neurobiological changes remain uncertain. In this study, we examined numbers of ΔFosB-immunoreactive cells in the forebrains of rats subjected to 12 episodes of social defeat. This was achieved using the social conflict model whereby animals are introduced into the home cage of older males (“residents”) trained to attack and defeat all such “intruders”; importantly, controls were treated identically except that the resident was absent. Our results indicated that the only region in which ΔFosB-positive cells were found in significantly higher numbers in intruders than in controls was the infralimbic medial prefrontal cortex (mPFC). This same effect was not apparent using another psychological stressor, noise stress. Cells of the infralimbic mPFC also displayed evidence of chromatin remodeling. We found that exposure to repeated episodes of social defeat increased numbers of cells immunoreactive for histone H3 acetylation, but not for histone H3 phosphoacetylation, in the infralimbic mPFC. Collectively, these findings highlight the importance of the infralimbic mPFC in responding to social stress—a finding that provides insight into the possible neurobiological alterations associated with stress-induced psychiatric illness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wide variety of stressors elicit Fos expression in the medial prefrontal cortex (mPFC). No direct attempts, however, have been made to determine the role of the inputs that drive this response. We examined the effects of lesions of mPFC catecholamine terminals on local expression of Fos after exposure to air puff, a stimulus that in the rat acts as an acute psychological stressor. We also examined the effects of these lesions on Fos expression in a variety of subcortical neuronal populations implicated in the control of adrenocortical activation, one classic hallmark of the stress response. Lesions of the mPFC that were restricted to dopaminergic terminals significantly reduced numbers of Fos-immunoreactive (Fos-IR) cells seen in the mPFC after air puff, but had no significant effect on stress-induced Fos expression in the subcortical structures examined. Lesions of the mPFC that affected both dopaminergic and noradrenergic terminals also reduced numbers of Fos-IR cells observed in the mPFC after air puff. Additionally, these lesions resulted in a significant reduction in stress-induced Fos-IR in the ventral bed nucleus of the stria terminalis. These results demonstrate a role for catecholaminergic inputs to the mPFC, in the generation of both local and subcortical responses to psychological stress.